Random groups have fixed points on $\mathrm{CAT}(0)$ cube complexes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groups acting on CAT(0) cube complexes

We show that groups satisfying Kazhdan’s property (T) have no unbounded actions on nite dimensional CAT(0) cube complexes, and deduce that there is a locally CAT(−1) Riemannian manifold which is not homotopy equivalent to any nite dimensional, locally CAT(0) cube complex. AMS Classi cation numbers Primary: 20F32 Secondary: 20E42, 20G20

متن کامل

Isometry Groups of Cat(0) Cube Complexes

Given a CAT(0) cube complex X, we show that if Aut(X) 6= Isom(X) then there exists a full subcomplex of X which decomposes as a product with R. As applications, we prove that ifX is δ-hyperbolic, cocompact and 1-ended, then Aut(X) = Isom(X) unless X is quasi-isometric to H, and extend the rank-rigidity result of Caprace–Sageev to any lattice Γ ≤ Isom(X).

متن کامل

Fixed Points of Finite Groups Acting on Generalised Thompson Groups

We study centralisers of finite order automorphisms of the generalised Thompson groups Fn,∞ and conjugacy classes of finite subgroups in finite extensions of Fn,∞. In particular we show that centralisers of finite automorphisms in Fn,∞ are either of type FP∞ or not finitely generated. As an application we deduce the following result about the Bredon type of such finite extensions: any finite ex...

متن کامل

Coxeter Groups Act on Cat(0) Cube Complexes

We show that any finitely generated Coxeter group acts properly discontinuously on a locally finite, finite dimensional CAT(0) cube complex. For any word hyperbolic or right angled Coxeter group we prove that the cubing is cocompact. We show how the local structure of the cubing is related to the partial order studied by Brink and Howlett in their proof of automaticity for Coxeter groups. In hi...

متن کامل

Homotopy fixed points for profinite groups emulate homotopy fixed points for discrete groups

If K is a discrete group and Z is a K-spectrum, then the homotopy fixed point spectrum Z is Map∗(EK+, Z) K , the fixed points of a familiar expression. Similarly, if G is a profinite group and X is a discrete G-spectrum, then X is often given by (HG,X), where HG,X is a certain explicit construction given by a homotopy limit in the category of discrete G-spectra. Thus, in each of two common equi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2012

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-2011-11343-1